Journal of Organometallic Chemistry, 362 (1989) 155-161
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Conformational variability in π-complexes of hexaethylbenzene. Crystal and molecular structure of $\left[\left(\mathrm{C}_{6} \mathrm{Et}_{6}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathbf{F e}\right] \mathrm{BPh}_{4}$

Raymond H. Dubois, Michael J. Zaworotko *,
Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3 (Canada)
and Peter S. White
Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B $6 E 2$ (Canada)
(Received July 1st, 1988)

Abstract

[(Hexaethylbenzene) $\left.\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{BPh}_{4}\right],\left[1 \mathrm{BPh}_{4}\right]$, crystallizes in the monoclinic space group, $P 2_{1} / c$, with a $15.7288(23), b 15.4411(14), \quad c 16.3356(20) \AA, \beta$ $107.972(10)^{\circ}$ and $D_{\text {calc }} 1.208 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=4$. Least-squares refinement gave a conventional R value of 0.047 for 2881 independent observed reflections. The structure reveals that the complexed hexaethylbenzene moiety in 1 adopts a conformation such that five ethyl groups point away from the iron atom (distal) and only one is directed towards the iron atom (proximal). This observation contrasts with an earlier crystallographic study conducted ($1 \mathrm{PF}_{6}$), in which the hexaethylbenzene ligand was shown to adopt a four distal/two proximal conformation. In other ways the cations in $1 \mathrm{BPh}_{4}$ and $1 \mathrm{PF}_{6}$ are almost identical, thereby suggesting that even subtle packing effects may influence the conformation adopted by sterically crowded ligands such as hexaethylbenzene.

Introduction

It has been demonstrated by several groups [1-5] that complexation of bulky arene molecules to transition metal moieties may result in restricted motion of the arene ring or its substituents. In such a context hexaethylbenzene (HEB) has been extensively studied [2,3] and complexed HEB has been observed to adopt one (or more) of the conformations $A-D$ in the solid state. Thus far attention has focussed

0022-328X/89/\$03.50

© 1989 Elsevier Sequoia S.A.
primarily upon HEB complexed to the tripodal or "piano-stool" metal moieties $\mathrm{Cr}(\mathrm{CO})_{2} \mathrm{~L}$ and in a series of elegant studies by Mislow [2] it was demonstrated that steric effects influence the conformational preference of the HEB ligand. Therefore for $\mathrm{L}=\mathrm{CO}$ [2a,b], $\mathrm{CS}\left[2 \mathrm{e}, 3 \mathrm{~b}, \mathrm{c}\right.$], $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{3}$ [2f], PMe_{3} [2d], PEt_{3} [2c] and PPh_{3} [2a,b] a gradual trend from \mathbf{A}, the favoured conformation for uncomplexed HEB to \mathbf{D}, the least favoured conformation for uncomplexed HEB, was observed in the solid state (distal = away from metal; proximal = towards metal).

The isolectronic cation $\left[(\mathrm{HEB})\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}\right]^{+}(1)$ has also been a subject of investigation as it represents a readily accessible "full sandwich" analogue of the aforementioned chromium "half-sandwich" complexes and it exhibits very interesting redox chemistry [6]. An earlier crystallographic study [3a] indicates that $1 \mathrm{PF}_{6}$ adopts conformation \mathbf{B} in the solid state (i.e. four distal methyl groups) thereby making 1 the only crystallographically characterized species that exclusively adopts this conformation in the solid state [7]. As part of our general interest in cationic transition metal arene complexes [8] we have had cause to isolate 1 as its tetraphenylborate salt, $\mathbf{1 B P h}_{4}$. We have undertaken X-ray structural characterization of this salt in order to determine if packing effects (i.e. use of a very bulky counter ion) may influence conformation of the cation. In this contribution we report the results of our structural investigation of $1 \mathrm{BPh}_{4}$, which reveal that in this instance 1 exclusively adopts conformation \mathbf{C} in the solid state $[7,9]$.

Results and discussion

Final fractional coordinates are displayed in Table 1 and important bond distances and angles are presented in Table 2. Perspective and overhead ORTEP [10] views of 1 (Fig. 1) reveal that the conformation adopted by the HEB ligand corresponds not to type \mathbf{B}, as was seen for its PF_{6}^{-}salt, but to type \mathbf{C} (five distal methyl groups, one proximal). The HEB in $1 \mathrm{BPh}_{4}$ is therefore the first complexed HEB to exclusively adopt such a conformation $[7,9]$ in the solid state. The conformation of the C_{5} ring relative to the C_{6} ring is the one that would be expected according to the steric requirements of the proximal methyl of the C_{6} ring (i.e. type 1 as defined by ref. 3a). Approximate C_{s} symmetry is therefore held by the cation. Surprisingly, there are very few X-ray structural comparisons available for areneiron(II) complexes. Bond distances and angles within the cation are as would be expected close to those seen for $\mathbf{1 P F}_{6}$. Steric strain manifests itself via slight tilting of the C_{5} and C_{6} rings. Least squares planes calculations show that the dihedral angles between the two ring planes is 5.4°, however, planarity remains within 0.02 \AA in both rings and the dihedral angles between the $\mathrm{C}_{\text {ring }}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ planes are within 5 of 90°. The $\mathrm{Fe}-\mathrm{C}$ bond distances exhibit the expected trend as the $\mathrm{Fe}-\mathrm{Cp}$ distances show a range of 2.033 (5) to $2.066(5) \AA$ (average $2.050 \AA$ vs. average 2.054 \AA for PF_{6}) and the areneiron distances range from $2.083(4)$ to $2.126(4) \AA$ (average $2.100 \AA$ vs. average $2.109 \AA$ for $1 \mathrm{PF}_{6}$ and average $2.130 \AA$ for $\left[\mathrm{Fe}(\text { mesitylene })_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ [11]). For both rings the longest $\mathrm{Fe}-\mathrm{C}$ distances, as expected, correspond to the location of the proximal ethyl group.

There are no unusual interionic contacts that might account for the conformation adopted by $\mathbf{1 B P h}_{4}$. We must therefore conclude that the energy difference between conformations B and C of 1 is small enough to be influenced by even subtle packing effects in the solid state. Our observation therefore supports the assertion that at

Table 1
Atomic parameters x, y, z and $B_{\text {iso }}$, esd's refer to the last digit printed

	x	y	z	$B_{\text {iso }}{ }^{\text {a }}$
Fe(1)	0.76929(4)	0.25956(4)	0.45928(4)	2.20(3)
C(11)	$0.6500(3)$	0.2653(4)	0.3637(3)	4.7(3)
C(12)	0.6894(4)	$0.1854(4)$	0.3633(3)	5.1(3)
C(13)	$0.7723(4)$	0.1991(3)	0.3482(3)	4.5(3)
C(14)	0.7825(3)	0.2884(3)	0.3403(3)	3.9(3)
C(15)	$0.7068(4)$	0.3290 (3)	0.3496 (3)	4.1(3)
C(21)	$0.7604(3)$	0.3393(3)	0.5598(3)	2.14(22)
C(211)	0.7063(3)	0.4210(3)	0.5551(3)	3.8(3)
C(212)	$0.7157(4)$	0.4590(4)	0.6447(4)	5.8(4)
C(22)	0.8478(3)	0.3459(3)	0.5541(3)	2.06(22)
C(221)	0.8893(3)	0.4349(3)	0.5523(3)	3.0(3)
C(222)	0.8764(4)	0.4746(3)	0.4636(3)	4.2(3)
C(23)	0.8983(3)	0.2706(3)	0.5507(3)	2.14(21)
C(231)	0.9914(3)	0.2797(3)	0.5427(3)	3.3(3)
C(232)	1.0621(3)	0.2899(4)	0.6302(4)	4.9(3)
C(24)	0.8605(3)	0.1868(3)	$0.5540(3)$	2.74(24)
C(241)	0.9106(4)	0.1054(3)	0.5406(4)	6.2(4)
C(242)	0.9798 (5)	0.0749(5)	0.6184(5)	9.3(5)
C(25)	0.7745(3)	0.1795(3)	0.5642(3)	2.74(24)
C(251)	0.7340(4)	0.0907(3)	0.5693(3)	4.4(3)
C(252)	0.7619(4)	0.0571(4)	0.6601(4)	6.3(4)
C(26)	$0.7237(3)$	$0.2560(3)$	0.5662(3)	2.53(22)
C(261)	0.6286(3)	0.2484(4)	0.5710(3)	4.2(3)
C(262)	0.6246(4)	0.2397(5)	$0.6610(4)$	6.7(4)
$\mathrm{B}(1)$	0.8034(4)	0.2844(3)	1.0060 (3)	2.5(3)
C(31)	0.8485(3)	0.1947(3)	1.0574(3)	2.36(22)
C(32)	0.8237(3)	0.1644(3)	1.1262(3)	3.3(3)
C(33)	0.8584(3)	0.0896(3)	1.1716(3)	3.6(3)
C(34)	0.9220(3)	0.0429(3)	$1.1500 \times(3)$	3.9(3)
C(35)	0.9490(3)	0.0697(3)	1.0821(4)	4.0(3)
C(36)	0.9126(3)	0.1443(3)	1.0373(3)	3.3(3)
C(41)	0.8572(3)	0.3162(3)	0.9389(3)	2.54(22)
C(42)	0.9084 (3)	$0.3905(3)$	0.9475(3)	3.2(3)
C(43)	0.9510(3)	0.4144(3)	0.8880 (3)	4.5(3)
C(44)	0.9426(4)	0.3657(4)	0.8173(3)	4.9(3)
C(45)	0.8919(4)	0.2915(4)	0.8043(3)	4.8(3)
C(46)	0.8505(3)	0.2682(3)	0.8646(3)	3.9(3)
C(51)	$0.7009(3)$	0.2655(3)	0.9453(3)	2.42(23)
C(52)	$0.6478(3)$	0.3332(3)	$0.9004(3)$	3.5(3)
C(53)	0.5633(3)	0.3210 (3)	$0.8432(3)$	3.9(3)
C(54)	0.5267(3)	$0.2385(3)$	0.8286(3)	3.25(24)
C(55)	0.5772(3)	0.1711(3)	$0.8720(3)$	3.5(3)
C(56)	0.6613(3)	0.1845(3)	0.9293(3)	2.77(24)
C(61)	0.8061(3)	0.3562(3)	$1.0805(3)$	2.56(23)
C(62)	0.7311(3)	0.3900(3)	1.0973(3)	3.3(3)
C(63)	0.7363(4)	0.4477(3)	1.1631(3)	3.9(3)
C(64)	0.8165(4)	0.4760 (3)	1.2163 (3)	4.2(3)
C(65)	0.8937(4)	0.4437(3)	$1.2035(3)$	4.0(3)
C(66)	0.8871(3)	0.3848 (3)	1.1376(3)	3.32(25)

[^0]Table 2
Important Bond Distances (\AA) and Angles $\left({ }^{\circ}\right)$ for $1 \mathrm{BPh}_{4}$.

(i) cation distances			
$\mathrm{Fe}(1)-\mathrm{C}(11)$	2.039(5)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.410(6)
$\mathrm{Fe}(1)-\mathrm{C}(12)$	2.033(5)	$\mathrm{C}(21)-\mathrm{C}(26)$	1.427(6)
$\mathrm{Fe}(1)-\mathrm{C}(13)$	$2.054(5)$	$\mathrm{C}(211)-\mathrm{C}(212)$	1.542(7)
$\mathrm{Fe}(1)-\mathrm{C}(14)$	2.066 (5)	$\mathrm{C}(22)-\mathrm{C}(221)$	$1.525(6)$
$\mathrm{Fe}(1)-\mathrm{C}(15)$	2.059(5)	$\mathrm{C}(22)-\mathrm{C}(23)$	1.418(6)
$\mathrm{Fe}(1)-\mathrm{C}(21)$	2.092(4)	C(221)-C(222)	1.530 (7)
$\mathrm{Fe}(1)-\mathrm{C}(22)$	2.126(4)	$\mathrm{C}(23)-\mathrm{C}(231)$	$1.516(6)$
$\mathrm{Fe}(1)-\mathrm{C}(23)$	2.122(4)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.432(6)
$\mathrm{Fe}(1)-\mathrm{C}(24)$	2.084(4)	C(231)-C(232)	$1.524(7)$
$\mathrm{Fe}(1)-\mathrm{C}(25)$	2.093(4)	$\mathrm{C}(24)-\mathrm{C}(241)$	1.535(7)
$\mathrm{Fe}(1)-\mathrm{C}(26)$	2.083(4)	C(24)-C(25)	1.417(7)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.381(8)	C(241)-C(242)	1.472(9)
$C(11)-C(15)$	$1.394(8)$	C(25)-C(251)	$1.526(6)$
$C(12)-C(13)$	1.416(9)	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.432(6)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.400(7)$	C(251)-C(252)	1.503(8)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.393(8)	$\mathrm{C}(26)-\mathrm{C}(261)$	1.526(6)
$\mathrm{C}(21)-\mathrm{C}(211)$	1.510 (6)	C(261)-C(262)	1.498(7)
(ii) anion distances			
$\mathrm{B}(1)-\mathrm{C}(31)$	1.660 (7)	$\mathrm{B}(1)-\mathrm{C}(51)$	1.637(7)
B(1)-C(41)	$1.653(7)$	B(1)-C(61)	$1.636(7)$
(iii) cation angles			
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	107.8(5)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	119.9(4)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(15)$	108.6(5)	$\mathrm{C}(241)-\mathrm{C}(24)-\mathrm{C}(25)$	120.2(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	107.5(5)	$\mathrm{C}(24)-\mathrm{C}(241)-\mathrm{C}(242)$	114.5(5)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	107.8(5)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(251)$	120.5(4)
$\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(14)$	108.3(5)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	119.8(4)
$\mathrm{C}(211)-\mathrm{C}(21)-\mathrm{C}(22)$	118.9(4)	$\mathrm{C}(251)-\mathrm{C}(25)-\mathrm{C}(26)$	119.6(4)
$\mathrm{C}(211)-\mathrm{C}(21)-\mathrm{C}(26)$	121.5(4)	$\mathrm{C}(25)-\mathrm{C}(251)-\mathrm{C}(252)$	111.4(4)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	119.6(4)	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	120.0(4)
$\mathrm{C}(21)-\mathrm{C}(211)-\mathrm{C}(212)$	112.4(4)	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(261)$	119.9(4)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(221)$	119.8(4)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(261)$	120.0(4)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	120.9(4)	$\mathrm{C}(26)-\mathrm{C}(261)-\mathrm{C}(262)$	113.4(4)
$\mathrm{C}(221)-\mathrm{C}(22)-\mathrm{C}(23)$	119.3(4)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(36)$	114.2(4)
$\mathrm{C}(22)-\mathrm{C}(221)-\mathrm{C}(222)$	116.5(4)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	123.6(5)
C(22)-C(23)-C(231)	119.6(4)	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	120.0(4)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	119.7(4)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	119.0(4)
$\mathrm{C}(231)-\mathrm{C}(23)-\mathrm{C}(24)$	120.7(4)	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	119.8(5)
$\mathrm{C}(23)-\mathrm{C}(231)-\mathrm{C}(232)$	112.0(4)	$\mathrm{C}(31)-\mathrm{C}(36)-\mathrm{C}(35)$	123.4(4)
C(23)-C(24)-C(241)	119.8(4)		

140 K 1 exists as three coexisting stereoisomers (\mathbf{B}, \mathbf{C} and \mathbf{D}) [2e]. It is relevant in this context that calculations have determined energy differences of only 3.48 or $2.20 \mathrm{kcal} / \mathrm{mol}$ between these conformations in uncomplexed hexaethylbenzene [2a]. The room temperature solution NMR spectra of $1 \mathrm{BPh}_{4}$ further support small energy differences between conformations as they are indicative of rapid interconversion of the ethyl groups, an observation consistent with earlier reports on $1 \mathrm{PF}_{6}$ [2e,3a].
a

Fig. 1. (a) perspective and (b) overhead views of the $\left[\left(\mathrm{C}_{6} \mathrm{Et}_{6}\right) \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$cation in $\left[\left(\mathrm{C}_{6} \mathrm{Et}_{6}\right) \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ $\left[\mathrm{BPh}_{4}\right]$.

Experimental

Synthesis. 1 was prepared by mixing ferrocene (Aldrich, $1.40 \mathrm{~g}, 0.00753 \mathrm{~mol}$), aluminium chloride (Johnson-Matthey-Aesar, $4.0 \mathrm{~g}, 0.030 \mathrm{~mol}$), aluminium powder (Fisher, $0.20 \mathrm{~g}, 0.0074 \mathrm{~mol}$) and hexaethylbenzene (Eastman Kodak, $2.45 \mathrm{~g}, 0.00994$

Table 3
Crystallographic data collection and structure refinement parameters for $\left[\left(\mathrm{C}_{6} \mathrm{Et}_{6}\right) \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \mathrm{BPh}_{4}$

Formula	$\mathrm{FeC}_{47} \mathrm{H}_{55} \mathrm{~B}$
Formula Wt.	686.4
Radiation	Mo-K ${ }_{\boldsymbol{a}}$
Crystal System	Monoclinic
Space Group	$P 2_{1} / n$
\boldsymbol{a}, \AA	15.7288(23)
b, \AA	15.4411(14)
c, \AA	16.3356(20)
$\beta{ }^{\circ}$	107.972(10)
V, \dot{A}^{3}	3773.9
\boldsymbol{Z}	4
$D_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$	1.208
μ, cm^{-1}	6.4
Crystal dimensions, mm	$0.40 \times 0.30 \times 0.30$
Scan type	0-20
2θ range, ${ }^{\circ}$	4-45
Reflections measured	4923
Reflections observed *	2881
Parameters refined	442
Ratio data/parameter	6.5
\boldsymbol{R}	0.047
R_{w}	0.050
GOF	1.295

[^1]$\mathrm{mol})$ in decahydronaphthalene at $100^{\circ} \mathrm{C}$ for 18 h under N_{2}. Hydrolysis, filtration and addition of an excess of aqueous NaBPh_{4} (Aldrich) to the aqueous phase precipitated $1 \mathrm{BPh}_{4}$. After drying $2.79 \mathrm{~g}(0.00406 \mathrm{~mol}, 53.9 \%)$ of yellow powdered $1 \mathrm{BPh}_{4}$ was isolated and confirmed pure by $\mathrm{NMR}:{ }^{1} \mathrm{H}\left(60 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right): \delta$ $7.26 \mathrm{~m}, 6.72 \mathrm{~m}\left(\mathrm{BPh}_{4}\right) ; 4.77 \mathrm{~s}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 3.02 \mathrm{q}\left(\mathrm{CCH}_{2} \mathrm{CH}_{3}\right) ; 1.36 \mathrm{t}\left(\mathrm{CCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}(91$ MHz , acetone- d_{6}): $\delta 137.0 \mathrm{~d}, 125.9 \mathrm{~d}, 122.1 \mathrm{~d}\left(\mathrm{BPh}_{4}\right) ; 105.3 \mathrm{~s}\left(\mathrm{CCH}_{2} \mathrm{CH}_{3}\right)$; 78.5d $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 23.8 \mathrm{t}\left(\mathrm{CCH}_{2} \mathrm{CH}_{3}\right)$; $16.3 \mathrm{q}\left(\mathrm{CCH}_{2} \mathrm{CH}_{3}\right)$ and analysis (found: $\mathrm{C}, 82.09 ; \mathrm{H}$, 8.04. $\mathrm{FeC}_{47} \mathrm{H}_{55} \mathrm{~B}$ calcd.: $\mathrm{C}, 82.24 ; \mathrm{H}, 8.08 \%$.

Crystals suitable for X -ray analysis were grown via slow evaporation of an acetone solution of $1 \mathrm{BPh}_{4}$.
X-ray crystallography. An orange, air stable crystal of $\mathbf{1 B P h}_{4}$ was mounted and sealed in a thin-walled glass capillary and placed on an Enraf-Nonius CAD-4 diffractometer. Cell dimensions from 25 reflections with 2θ angles in the range $30.00-35.00^{\circ}$ are listed along with other pertinent data collection parameters in Table 3. The structure was solved via heavy-atom methods and refined using the NRC VAX Crystal Structure System [12] locally adapted for a Wicat Systems S-1260 computer. Refinement converged at $R=0.047$ with all non-hydrogen atoms refined with anisotropic thermal parameters and hydrogen atoms placed in calculated positions ($\mathrm{C}-\mathrm{H} 0.96 \AA$). Careful examination of a difference Fourier map at this stage showed no evidence of disorder for any of the ethyl groups.

Acknowledgements

We thank NSERC (operating and research development grants to MZ, infrastructure to PSW) and the donors of the Petroleum Research Fund, administered by the American Chemical Society (MZ), for financial support of this work. We would also like to thank Dr. Don Hooper of the Atlantic Region Magnetic Resonance Centre (ARMRC) for providing high field ${ }^{13} \mathrm{C}$ NMR spectra.

References and notes

1 (a) R.K. Pomeroy and D.J. Harrison, J. Chem. Soc., Chem. Commun., (1980) 661; (b) X. Hu, J. Duchowski and R.K. Pomeroy, ibid., (1988) 362.
2 (a) G. Hunter, D.J. Iverson, K. Mislow and J.F. Blount, J. Am. Chem. Soc., 102 (1980) 5942; (b) D.J. Iverson, G. Hunter, J.F. Blount, J.R. Damewood and K. Mislow, ibid., 103 (1981) 6073; (c) G. Hunter, J.F. Blount, J.R. Damewood, D.J. Iverson and K. Mislow, Organometallics, 1 (1982) 448; (d) J.F. Blount, G. Hunter and K. Mislow, J. Chem. Soc., Chem. Commun., (1984) 170; (e) G. Hunter and K. Mislow, ibid., (1984) 172; (f) G. Hunter, T.J.R. Weakly, K. Mislow and M.G. Wong, J. Chem. Soc., Dalton Trans., (1986) 577.
3 (a) J.R. Hamon, J.Y. Saillard, A. Le Beuze, M.J. McGlinchley, and D. Astruc, J. Am. Chem. Soc., 104 (1982) 7549; (b) M.J. McGlinchley, J.L. Fletcher, B.G. Sayer, P. Bougeard. R. Faggiani, C.J.L. Lock, A.D. Bain, C. Rodger, E.P. Kundig, D. Astruc, J.R. Hamon, P. Le Maux, S. Top and G. Jaouen, J. Chem. Soc., Chem. Commun., (1983) 634; (c) M.J. McGlinchley, P. Bougeard, B.G. Sayer, R. Hofer and C.J.L. Lock, ibid., (1984) 789.
4 E.M. Campi, B.M.K. Gatehouse, W.R. Jackson, I.D. Rae and M.G. Wong, J. Chem. Soc., Chem. Commun., (1984) 175.
5 U. Zenneck, Ch. Elschenenbroich and R. Mockel, J. Organomet. Chem., 219 (1981), 177.
6 D. Astruc, Aćc. Chem. Res., 19 (1986) 377.
7 (HEB) $\mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)$ adopts conformations B and C in the solid state (approximate ratio 4/1). See ref. 2 d for details.

8 M.V. Gaudet, A.W. Hanson, P.S. White and M.J. Zaworotko, Organometallics, in press.
9 (HEB) $\mathrm{Cr}(\mathrm{CO})_{2} \mathrm{PEt}_{3}$ adopts type C conformation in equal population with conformation D in the solid state (ref. 2c); (HEB) $\mathrm{Cr}(\mathrm{CO})_{2} \mathrm{PPh}_{3}$ adopts conformation C in approximately one third of molecules in the solid state, the remainder adopt conformation D (ref. 2d).
10 C.K. Johnson, ORTEP; Report ORNL-3794, revised, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1965.
11 T.S. Cameron, A. Linden, C. Sturge and M.J. Zaworotko, unpublished results.
12 E.J. Gabe, F.L. Lee and Y. Le Page in G.M. Sheldrick, C. Kruger and R. Goddard (Eds.), Crystallographic Computing 3: Data Collection, Structure Determination, Proteins and Databases, Clarendon Press, Oxford; p. 167-174, 1985.

[^0]: ${ }^{a} B_{\text {iso }}$ is the mean of the principal axes of the thermal ellipsoid.

[^1]: ${ }^{\sigma} I>2.5 \sigma(I)$

